DÉTERMINATION INDIRECTE DE LA DENSITÉ DE LA CASÉINE. Soient, par litre de lait E le poids de l'extrait, B le poids du beurre, S le poids des matières dissoutes (extrait du sérum) et C le poids de la caséine; on a, si l'on envisage la composition du nonbeurre comme il a été dit plus haut: d'où l'on déduit : (E-B)=S+C C=(E-B)-S et S=(E-B)—C et si l'on désigne par y la densité de la caséine, on peut, en considérant les volumes au lieu des poids, poser l'équation: qui donne, en remplaçant C par sa valeur : (EB)-S Or, on peut calculer (E-B) en fonction de la densité du lait et de sa richesse en beurre, et il suffit de déterminer, en outre, la densité D' du sérum pour en déduire la valeur de S. donne en remplaçant S′ par sa valeur : [3] (1000 (D'—1)) 3 1,75 (1000 D—E) (1000 (D′—1)) 750-1000 (D'-1) La formule [4] permet donc de déterminer indirectement la densité de la caséine d'un lait donné. Cette méthode m'a permis d'établir par de nombreuses expériences, que la densité de la caséine ne varie pas sensiblement d'un lait à un autre et n'est pas influencée par le mouillage. La moyenne de mes déterminations m'avait amené dès 1901 (1) à fixer sa valeur constante à 1,33 et comme j'ai pu le constater depuis, le calcul permet d'établir qu'elle est en réalité égale à 4 3 (= 1,3333....) c'est-à-dire à la moitié du coefficient de 1000(D-1) dans la formule de l'extrait. Cela s'explique par ce fait que la densité 1.60 du non-beurre est corrélative de la densité 1.75 de l'extrait du sérum et de la densité de la caséine. 4 3 Or, si l'on admet que la densité de la caséine est égale à , il en résulte que le non-beurre, dans le lait moyen normal, contient 30% de caséine et 70 % de matières dissoutes. En effet, soit y la densité de la caséine, si dans l'équation : 4 3' On a . d'où l'on tire: C=0,3 (EB) et par différence S=0,7 (E-B) [6] [7] Pour démontrer que la densité de la caséine est bien égale à il suffit de remplacer dans l'équation : relation établie plus haut [2] en dehors de toute hypothèse. (1) Bulletin de la Société Chimique du Nord de la France, fasc. II, page 31. CALCUL DE LA DENSITÉ DU SÉRUM EN FONCTION DU NON-BEURRE On a vu précédemment [5] que le poids S des matières dissoutes dans le sérum d'un litre de lait pouvait être représenté par l'expres1,75 (1000 D-E) 1000 (D'—1) il vient d'être établi [7] que sion 750-1000 (D'—1) ce même poids est égal à 0,7 (E-B) et il est facile de voir que ces deux valeurs de S mises en équation donnent : Lindet (1), dans le but d'établir un rapport entre le poids de la caséine du lait et l'écart entre les densités du lait et du lait dégraissé correspondant, a indiqué pour calculer la densité D', du lait dégraissé en fonction de la densité D du lait et de sa richesse en beurre, la formule: CALCUL DE LA DENSITÉ DU LAIT DÉGRAISSÉ, EN FONCTION Si l'on désigne par X le poids de non-beurre contenu dans un litre de lait dégraissé, la proportion : dans laquelle il suffit de remplacer 1000 D-B par la valeur égale (1) LINDET, Le lait, la crème et les fromages, Paris, 1907. CONCLUSIONS. Comme le montrent ces résultats, l'analyse indirecte du lait, limitée jusqu'ici au calcul de l'extrait peut être étendue au calcul de la caséine, des matières dissoutes, de la densité du sérum et de la densité du lait dégraissé, sans autres déterminations que la densité du lait à 15° et de sa richesse en beurre. Ces données sont faciles à obtenir avec une exactitude suffisante dans la pratique, au moyen de la balance de Wesphale et de l'acido-butyromètre de GERBER, et les formules établies sur ces bases permettent d'apprécier sommairement la valeur d'un lait, de même qu'elles peuvent avantageusement servir de contrôle à son analyse proprement dite. (1) Ces deux valeurs permettent d'exprimer algébriquement 1000 (D′ — 1) et 1000 (D-1) en fonction l'une de l'autre. On a ainsi: Il me reste à montrer, pour terminer cette étude dont l'intérêt excusera peut-être l'aridité, que le rapport de l'eau au non-beurre 1000 D-E permet l'évaluation rapide du mouillage. dans le lait': (E—B). Les éléments d'appréciation du mouillage Son évaluation rapide; formule mnémotechnique, Les méthodes pratiques d'appréciation du mouillage reposent sur l'une des bases suivantes : 1o Le poids constant du non-beurre pour 100cc de lait. 2o Le poids constant des matières dissoutes pour 100 de lait. 3o La densité du sérum du lait. On verra plus loin qu'on peut y ajouter : 4° La fixité du rapport de l'eau au non-beurre dans le lait nonmouillé. 5o La densité du lait dégraissé. Les nombreuses analyses de GROS, directeur du laboratoire municipal de Clermont-Ferrand, ont établi que, dans les laits non mouillés, le poids du non-beurre pour 100 de lait ne descend pas normalement au-dessous de 9; mais, comme il est facile de le montrer par un exemple, le poids du non-beurre rapporté au lait n'est pas indépendant de l'écrémage. 37,50 = Soit un lait entier contenant par litre 378,50 de beurre et 90 gr. de non-beurre ; il est évident qu'un litre de ce lait peut être considéré comme la somme des volumes du beurre : 40cc et du lait dégraissé : 1000—40 960, et que lait complètement privé de beurre : beurre. 0,94 l'on dosera dans un litre de ce 90 × 100 = 93gr,75 de non960 En supposant qu'on n'enlève que la moitié du beurre, un litre. du lait ainsi écrémé à 50 % contiendra 91,83 de non-beurre. Sans en exagérer l'importance, ces écarts ne sont pas négligeables et montrent que d'une manière générale le pourcentage du nonbeurre dans le lait augmente proportionnellement à l'écrémage; mais il y a plus, si l'on remplace par un égal volume d'eau le beurre qu'on enlève au lait, il est facile de comprendre que le lait écrémé et mouillé ainsi obtenu, contiendra le même poids de non-beurre que le lait entier. Le Dr CORNALBA, dans ces dernières années, a proposé de remplacer la détermination du non-beurre par celle des matières dissoutes dans le lait ; mais, rapporté au lait, le poids des matières dissoutes qui représente une fraction du non-beurre, est sujet à la même critique et le chiffre de Cornalba n'est pas davantage indépendant de l'écrémage. |